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a b s t r a c t

Photovoltaic (PV) inverters convert DC voltage and current to AC quantities whose magnitude and
frequency are controlled to obtain the desired output. While there are plenty of controllers, it is the fuzzy
logic controller (FLC) that receives increasing attention. In this study, a novel metaheuristic optimization
algorithm known as lightning search algorithm (LSA) is presented for solving the problem of trial and
error procedure in obtaining membership functions (MFs) used in the conventional FLCs. The LSA
mimics the natural phenomenon of lightning. It is generalized from the mechanism of step leader
propagation. The proposed optimization algorithm considers the concept of fast particles known as
projectiles. The probabilistic nature and tortuous characteristics of lightning discharges, which depend
on the type of projectile, are modeled using various random distribution functions. To evaluate the
reliability and efficiency of the proposed algorithm, the LSA is first tested using 10 benchmark functions
with various characteristics necessary to evaluate a new algorithm. Then it is used in designing optimum
FLC for standalone PV inverter. The result demonstrates that the LSA generally provides better outcome
compared with the other tested methods with a high convergence rate.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Photovoltaic (PV) system has played very important role in the
renewable energy (RE) technologies because PV systems are environ-
ment friendly, clean, and secure energy sources [1]. The PV based RE
technologies has received a lot of attentions for stand-alone (SA) and
grid-connected (GC) systems [2]. In the SA mode the inverter should
be able to generate high quality power to the loads. An inverter is
required to connect the load to the PV where the latter generates DC
power [3]. The output waveforms, voltage and current, under the SA
mode of operation of the inverter should be controlled based on the
reference values. Therefore, a voltage source inverter (VSI) and a
suitable voltage control approach are required [4]. The main feature of
a good power inverter is its capability to provide constant amplitude
sinusoidal voltage and frequency regardless the typing of the load it is
connected to. The power inverter must also have the capability to
quickly recover from transients affected by the disturbances without
causing power quality problems. However, the large-scale use of PV
generators raises many challenges, such as harmonic pollutions, low

efficiency of energy conversion, fluctuation of output power, and
reliability of power electronic converters [5].

Various inverter control techniques have been suggested by
many researchers and discussed in [6]. FLCs have become increas-
ingly popular in designing inverter controls because it include an
advantage over the traditional controller by reducing the depen-
dence on the mathematical model [7,8]. Nonetheless, the perfor-
mance of FLCs depends on the rule basis, number of rules, and
MFs. These variables are determined by a trial and error procedure,
which is time consuming [9,10]. Thus, to overcome these limita-
tions in FLC design, an optimization method was suggested in [11].
The method uses particle swarm optimization (PSO) algorithm and
FLC for maximum power point tracking. However, PSO is prone to
premature convergence and hence there is a need to find a better
way to optimize the FLC. In a related work [12–14], the problem of
adaptive fuzzy tracking control for a class of uncertain multiple-
input–multiple-output pure-feedback nonlinear systems with
immeasurable states was considered. In this work, fuzzy logic
systems were first used to approximate the unknown nonlinear
functions, and then a fuzzy state observer was designed to
estimate the unmeasured states.

Many techniques have been suggested to deal with optimiza-
tion problems. The optimum solution in most classical point-by-
point methods is obtained by deterministic procedure [15]. As the
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size of the search space increase with the dimension of the
optimization problem; the finding of the optimum solution for
such problems using classical techniques becomes complicated
[16]. Recently, computational intelligence optimization algorithms
have been extensively used to solve complex optimization pro-
blems in various domains, including science, commerce, and
engineering, because of their ease of use, broad applicability, and
global perspective. computational-intelligence means search of
solution for a problem by natural or artificial agents that address
complex real-world problems [17]. These algorithms can be
further divided into swarm intelligence methods and evolutionary
algorithms (EAs). Swarm intelligence optimization algorithms
generally use reduced mathematical models of the complex social
behavior of insect or animal groups.

The most popular swarm intelligence methods are particle
swarm optimization (PSO) [18], artificial bee colony (ABC) [19],
and ant colony optimization (ACO) [20]. The PSO mimics the
movements of bird flocking or fish schooling [21]. Inspired by
the food-searching mechanism of honey bees, the ABC method
uses the foraging behavior of these insects [22]. Meanwhile, ACO
was developed based on the behavior of ants when seeking the
optimal path between their colony and food source [20]. However,
these swarm intelligence methods are limited by factors such as
trapping in local minima and premature convergence [21–23]. To
overcome these problems, variants of these algorithms have been
developed with superior performance [21,23–25]. Other swarm
intelligence methods, such as the gravitational search algorithm
(GSA) [26], the harmony search algorithm [27], biogeography-
based optimization [28], and the grenade explosion method [29],
have also been developed.

EAs derive their working principles from natural genetic
evolution. At each generation, the best individuals of the current
population survive and produce offspring resembling them; hence,
the population gradually comprises enhanced individuals. Opera-
tions such as recombination, crossover, mutation, selection, and
adaptation are involved in this process [30]. The renowned
paradigms of EAs are the genetic algorithm (GA) [30], evolutionary
programming [31], differential evolution [32], evolutionary strat-
egy [28], and genetic programming [33]. These algorithms are
based on the principles of Darwinian theory and evolution theory
of living beings. However, each algorithm follows specialized
recombination, crossover, mutation, selection, and adaptation
strategies. Similar to other metaheuristic algorithms, the afore-
mentioned methods also have some drawbacks, such as slow
convergence rate, difficulty in solving multimodal functions, and
stagnation in local minima [34–36]. Advanced versions of EAs have
been developed in recent years to improve the efficiency and
performance of the aforementioned EAs; these advanced algo-
rithms include stud genetic algorithm [36], fast evolutionary
programming [35], adaptive differential evolution algorithm [37],
and covariance matrix adaptation evolution strategy [38]. Not all
algorithms and their variants provide superior solutions to some
specific problems. Therefore, new heuristic optimization algo-
rithms must be continuously searched to advance the field of
computational intelligence optimization.

This study aims to introduce a novel metaheuristic optimiza-
tion method called the lightning search algorithm (LSA) to solve
the problem of trial and error procedure in obtaining membership
functions (MFs) used in conventional FLCs. The LSA is based on the
natural phenomenon of lightning. The proposed optimization
algorithm is generalized from the mechanism of step leader
propagation. It considers the involvement of fast particles known
as projectiles in the formation of the binary tree structure of a step
leader. Three projectile types are developed to represent the
transition projectiles that create the first step leader population
N, the space projectiles that attempt to become the leader, and the

lead projectile that represent the best positioned projectile origi-
nated among N number of step leaders. The probabilistic nature
and tortuous characteristics of lightning discharges, which depend
on the type of projectile, are modeled using various random
distribution functions. The utilization of the LSA is expected to
improve the performance of FLCs for PV inverters. For this
purpose, a unique objective function which considers the mean
square error (MSE) of the three-phase PV inverter output voltage
was formulated. The LSA aims to minimize MSE by adaptively
tuning the MFs of FLC during the controller design phase.

2. Mechanism of lightning

Lightning is a fascinating and impressive natural phenomenon.
The probabilistic nature and tortuous characteristics of lightning
discharges originate from a thunderstorm. Among the common
displays of lightning, downward negative cloud-to-ground light-
ning flashes (Fig. 1) are the most studied event in lightning
research [39].

During a thunderstorm, charge separation occurs within the
cloud, usually with a negative charge below and a positive charge
above. This process creates a strong electric field. Free electrons
generated by cosmic radiation or natural radioactivity are gener-
ally attached to oxygen molecules to form negative ions [40].
However, under high electric fields, a part of the electron velocity
distribution possesses enough energy to ionize air, thereby gen-
erating additional electrons together with the original ones.

When one of these free electrons is accelerated by the electric
field in the region where ionization probability is higher than
attachment probability, an electron avalanche occurs. This phe-
nomenon eventually causes a negative corona streamer. None-
theless, the streamers are weak and become electrically isolated
from their point of origin when the ionization probability is lower
than the attachment probability.

The so-called streamer-to-leader transition happens at high
electron densities and temperatures when narrow channels are
thermalized. The negative or the step leader's movement from
cloud to ground is not continuous but progresses through regular
and discrete steps. For the leader to progress, a leader section in
the vicinity in front of the old leader channel, called a space leader,
develops from the preceding corona streamers. The space leader
propagates backward until it connects to the old leader channel
forming a long channel with a tip having the same electric
potential [41]. A current wave is generated during this process.

Once this current wave reaches the tip of the new leader, a
burst of corona streamers again propagates out in front of the new
tip. Afterward, a new space leader originates in front of the current
leader tip. The procedure is then repeated. The development is a

Fig. 1. Step leaders descending from a storm cloud.
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stochastic growth process in which the probability of a step to
grow in a certain direction is determined by the state of the
medium and the projection of the local electric field in this
direction [39,42].

As the step leaders approach the earth, high-density negative
charges at the leader tip stimulate a concentrated positive charge
on earth. When the electric field intensity resulting from the
positive charges near the ground becomes large enough, upward
positive streamers from the ground are initiated, and the step
leader bridges the gap as they move their way down. This
phenomenon determines the lightning strike point and the main
lightning current path between the cloud and the ground. The step
leader is not the lightning strike; it only maps the optimal course
that the strike will follow.

3. Lightning search algorithm (LSA)

The proposed optimization algorithm is generalized from the
hypothesis presented in [43] as a mechanism of step leader
propagation. It considers the involvement of fast particles known
as projectiles in the formation of the binary tree structure of the
step leader and in the concurrent formation of two leader tips at
fork points instead of a conventional step leader mechanism that
uses the concept of streamers described above.

3.1. Projectile and step leader propagation

Hydrogen, nitrogen, and oxygen atoms can be found near the
region of thunderclouds. During the intensive freezing of water
molecules within a thundercloud, a fraction of the water mole-
cules incapable to fit in the ice structure are squeezed out of the
forming ice at intense speeds. The oxygen and hydrogen atoms are
separated during the process and ejected in a random direction as
projectiles. It travels through the atmosphere after being ejected
from the thunder cell, and provides an initial ionization path or
channel through collision and transition to the step leader. In the
proposed algorithm, each projectile from the thunder cell is
assumed to create a step leader and a channel. In other words,
the projectile represents the initial population size. The concept of
projectile is highly similar to the term “particle” or “agent” used in
PSO and the GSA, respectively. The projectiles suggest random
solutions for corresponding problems to be solved by the LSA. In
the present study, the solution refers to the tip of the current step
leader's energy Ec.

3.2. Properties of the projectile

A projectile that moves in the atmosphere under normal
conditions loses its kinetic energy during elastic collisions with
molecules and atoms in the air. The velocity for the projectile is
given as

vp ¼ 1� 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðv0=cÞ2

q
�sFi=mc2

� ��2
" #�1=2

ð1Þ

where vp and v0 are the current velocity and initial velocity,
respectively, of the projectile; c is the light speed; Fi is the constant
ionization rate; m is the mass of the projectile; and s is the length
of the path traveled.

Eq. (1) clearly shows that velocity is a function of leader tip
position and projectile mass. When the mass is small or when the
path traveled is long, the projectile has little potential to ionize or
explore a large space. It can only ionize or exploit the nearby
space. Therefore, the exploration and exploitation abilities of the

algorithm can be controlled by using the relative energies of the
step leaders.

Another important property of a stepped leader is forking, in
which two simultaneous and symmetrical branches emerge. This
phenomenon rarely occurs because of nuclei collision. Any addi-
tional channel created during forking increases the number of
projectiles by one and hence the population size. In the proposed
algorithm, forking is realized in two ways. First, symmetrical
channels are created because the nuclei collision of the projectile
is realized by using the opposite number as in Eq. (2) [44].

pi ¼ aþb�pi ð2Þ
where pi and pi are the opposite and original projectiles, respec-
tively, in a one-dimensional system; a and b are the boundary
limits. This adaptation may improve some of the bad solutions in
the population. If forking does not improve channel propagation in
the LSA, one of the channels at the forking point is illuminated to
maintain the population size.

In the second type of forking, a channel is assumed to appear at
a successful step leader tip because of the energy redistribution of
the most unsuccessful leader after several propagation trials. The
unsuccessful leader can be redistributed by defining the maximum
allowable number of trials as channel time. In this case, the
population size of step leaders does not increase.

3.3. Projectile modeling and step leader movement

Three projectile types are developed to represent the transition
projectiles that create the first-step leader population N, the space
projectiles that attempt to reach the best leader position, and the
lead projectiles that represent the best position among N numbers
of step leaders. In this case, a one-dimensional projectile type is
illustrated for clarity.

3.3.1. Transition projectile
As mentioned previously, a leader tip is formed at an early

stage because the transition forms an ejected projectile from the
thunder cell in a random direction. Therefore, it can be modeled as
a random number generated from the standard uniform prob-
ability distribution on the open interval representing the solution
space. The probability density function f(xT) of the standard uni-
form distribution can be represented as

f ðxT Þ ¼ 1=b�a for arxT rb

0 for xoa or xT 4b

(
ð3Þ

where xT is a random number that may provide a solution or the
initial tip energy Esl_i of the step leader sli; a and b are the lower
and upper bounds, respectively, of the solution space. For a
population of N step leaders SL¼ ½sl1; sl2; sl3; :::; slN �, N random
projectiles PT ¼ ½pT1 ; pT2; pT3 ; :::; pTN� that satisfy the solution dimen-
sion are required.

3.3.2. Space projectile
Once the N step leader tips are evolved, the leaders need to

move using energetic projectiles by ionizing the section in the
vicinity of the old leader tip in the next step stepþ1. The position
of the space projectile PS ¼ ½pS1; pS2; pS3; :::;pSN� at stepþ1 can be
partially modeled as a random number drawn from the exponen-
tial distribution with shaping parameter m. The probability density
function f(xS) of an exponential distribution is given by

f ðxSÞ ¼
1
μe

� xS
μ for xSZ0

0 for xSr0

8<
: ð4Þ

Eq. (4) shows that the space projectile position or the direction in
the next step can be controlled by shaping parameter m. In the LSA,
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Fig. 2. Pseudo-code of the proposed LSA algorithm.
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μi for a specific space projectile pSi is taken as the distance between
the lead projectile pL and the space projectile pSi under considera-
tion. With this definition, the position of pSi at stepþ1 can be
written as

pSi_new ¼ pSi 7exprandðμiÞ ð5Þ

where exprand is an exponential random number. If pSi is negative,
then the generated random number should be subtracted because
Eq. (4) only provides positive values. However, the new position
pSi_new does not guarantee stepped leader propagation or channel
formation unless the projectile energy ESp_i is greater than the step
leader Esl_i to extend the channel or until a good solution is found.
If pSi_new provides a good solution at stepþ1, then the correspond-
ing stepped leader sli is extended to a new position sli_new , and pSi is
updated to pSi_new. Otherwise, they remain unchanged until the
next step. If pSi_new extends sli_new beyond the recent, most extended
leader during this process, then it becomes the lead projectile.

3.3.3. Lead projectile
Presumably, the step leader that has traveled nearest to the

ground and the projectile associated with it do not have enough
potential to ionize large sections in front of the leader tip. There-
fore, the lead projectile can be modeled as a random number
generated by the standard normal distribution with the shape
parameter m and the scale parameter σ. The normal probability

density function f(xL) is expressed as

f ðxLÞ ¼ 1
σ

ffiffiffiffiffiffi
2π

p e
� ðxL � μÞ2

2σ2 ð6Þ

Eq. (6) shows that the randomly generated lead projectile can
search in all directions from the current position defined by the
shape parameter. This projectile also has an exploitation ability
defined by the scale parameter. In the LSA, μL for the lead
projectile pL is taken as pL, and the scale parameter σL exponen-
tially decreases as it progresses toward the earth or as it finds the
best solution. With this definition, the position of pL at stepþ1 can
be written as

pLnew ¼ normrandðμL;σLÞ ð7Þ

where normrand is a random number generated by the normal
distribution function. Similarly, the new lead projectile position
pLnew does not guarantee step leader propagation unless the
projectile lead projectile energy ELp_i is greater than the step leader
Esl_i to extend to a satisfactory solution. If pLnew provides a good
solution at stepþ1, then the corresponding step leader sli is
extended to a new position slL_new , and pL is updated to pLnew .
Otherwise, they remain unchanged until the next step, as in the
case of the space projectile. The whole procedure of the LSA is
summarized in pseudo-code as shown in Fig. 2.

4. Inverter control methodology

Inverter control is aimed at regulating the AC output voltage at
a desired magnitude and frequency with low harmonic distortion.
This regulation is carried out by the controller by implementing a
proper control methodology to keep the voltage at a set reference.
The configuration for the standalone PV inverter utilized in this
study is presented in Fig. 3.
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4.1. Control design procedure

The concept of the inverter control shown in Fig. 3 is explained
in Fig. 4. To apply the strategy of the control in the inverter system,
three-phase output voltages (Va, Vb, and Vc) in the synchronous
reference frame must be sensed at the load terminals. These
voltages (Va, Vb, and Vc) are then scaled and transformed into a
d–q reference frame (Vd and Vq) to simplify the calculations for
controlling the three-phase inverter [45,46].

Considering the non-linearity of the power conversion process
of PV inverters, fuzzy logic is a convenient method to adopt in a PV
inverter control system. The FLC represents the human expert
decision in the problem solving mechanism. As shown in Fig. 4,
the FLC have two inputs (E and CE). The first input (E) represents
the error between the measured voltages Vd and Vq and reference
voltages Vdref and Vqref per unit. The second input (CE) represents
the change in error CE which is determined by taking the
derivative of E. These signals (i.e., E and CE) are then sent to the
controller at each sampling time Ts to compute the missing
components in Vd and Vq and to generate the new Vd and Vq

signals. The FLC design must pass through the following four steps
[47,48].

4.1.1. Definition of the module characteristics
This is an important step to locate where the fuzzy logic

controller can be located in the system which it help the designer
to define the range for the inputs and output. In this work where
FLC serves as a PV inverter controller, E and CE are used as inputs,
whereas the missing component of Vd (or Vq) defined as O is used
as the output of the FLC. For example, the two inputs for the FLC
depicted in Fig. 4, namely, E and CE, at the tth sampling step
corresponding to Vd can be represented as

EðtÞ ¼ Vdref �VdðtÞ ð8Þ

CEðtÞ ¼ EðtÞ�Eðt�1Þ ð9Þ

The output O for this case can be obtained at the last stage of the
FLC design, which is clarified in the next section. After the inputs
and output are defined, the next stage involves the fuzzification of
inputs.

4.1.2. Fuzzifier design
This step performs the fuzzification interface. It translates the

crisp values of “E” and “CE” as the fuzzy set “e” and “ce”,
respectively, through the MF degrees me(E) and mce(CE), which
range from 0 to 1, as shown in Fig. 5 for triangular MFs. In Fig. 5(a),
the membership function of error (MFE) is defined by three
elements namely, X1, X2, and X3 whereas the membership function
of change of error (MFCE) in Fig. 5(b) is defined by another three
elements represented as X4, X5, and X6.

After defining the MFs, me(E) and mce(CE) can be expressed
respectively as follows:

μeðEÞ ¼
E�X1
X2 �X1

X1rEoX2

1þ X2 �E
X3 �X2

X2rEoX3

8<
: ð10Þ

μceðCEÞ ¼
CE�X4
X5 �X4

X4rCEoX5

1þX5 �CE
X6 �X5

X5rCEoX6

8<
: ð11Þ

In a standard FLC design, the selection of the number of MFs and
boundary values of each MF must be adjusted by the designer
using the trial and error method until the FLC provides a
satisfactory result. However, this process is time consuming and

Start

Calculate the µe(E) using
equation (10)

i>n
Reach maximum rules?

Calculate weighted factor, wi
using equation (13)

Select the inputs E and CE

Calculate the crisp value
output using equation (12)

Calculate the µce(CE) using
equation (11)

End
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No
i = i + 1

Rule Base

Inference
Engine

Calculate wi .ui

Fig. 6. Encoding of the FLC. Fig. 7. Proposed LSA based optimum FLC design procedure.
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laborious. After the inputs are fuzzified, the fuzzy inputs are
subjected to an inference engine for generating the fuzzy output.

4.1.3. Inference engine design
This step includes generating the rules in the form of IF (condition)

THEN (action). The rules with two inputs for the Mamdani type are
written as

R: IF E is “label” AND CE is “label”, THEN u is “label”.
The quantity of rules relates to the number of the inputs and MFs

utilized in the FLC [47,48]. An FLC with large rule base demands a
greater computational effort in terms of memory and comp-
utation time.

Fig. 8. Simulation model of the three phase inverter.

Fig. 9. FLC with 7 MFs for (a) E (b) CE, and output.

Table 1
Fuzzy control rules based on seven MF.

Error (E) Change of error (CE)

MFCE1 MFCE2 MFCE3 MFCE4 MFCE5 MFCE6 MFCE7

MFE1 NB NB NB NB NM NS ZO
MFE2 NB NB NB NM NS ZO PS
MFE3 NB NB NM NS ZO PS PM
MFE4 NB NM NS ZO PS PM PB
MFE5 NM NS ZO PS PM PB PB
MFE6 NS ZO PS PM PB PB PB
MFE7 ZO PS PM PB PB PB PB

NB¼negative big, NM¼negative medium, NS¼negative small, ZO¼zero, PS¼po-
sitive small, PM¼positive medium, and PB¼positive big.
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4.1.4. Defuzzifier design
The last step of the FLC is defuzzification. There are many

approaches to perform the defuzzification. In this study, the center
of area (COA) method given in (12) is used to generate the crisp

value because it is more accurate and recommended [47].

O¼
Pn

i ¼ 1 wi:uiPn
i ¼ 1 wi

ð12Þ

where n is the number of rules, and wi is the weighted factor that
can be calculated using the Mamdani-MIN between me(E) and
mce(CE) as expressed in (13).

wi ¼MIN μeðEÞ;μceðCEÞ
� � ð13Þ

The steps to implement the standard FLC are illustrated in Fig. 6.

4.2. Proposed optimum FLC design procedure

As noted in the FLC design procedure, the main drawback of
FLC design is the time-consuming trial and error process used to
adjust the boundary values of MFs in the fuzzification process. An
improper selection of MF boundaries may lead to the poor
performance of the overall system. Therefore, this paper presents
a methodology to optimize MFs using a new heuristic optimiza-
tion algorithm. The heuristic optimization algorithms are used for
solving complex and intricate problems which are otherwise
difficult to solve by classical methods. They are population based
methods designed to solve a problem more quickly or to find an
approximate solution when classic methods fail to find the
solution especially with multimodal optimization problems. The
LSA is used as a heuristic optimization tool for adjusting the
boundary values of MFs adaptively of the FLC design for PV
inverter control. The four basic components that are vital to any
optimization method are input vectors, objective function formu-
lation, optimization limitations, and the implementation steps of
the optimization method to obtain the optimal design. Each
component is developed and clarified to obtain optimal MFs. The
optimization technique searches the optimal solution as formu-
lated in the objective function through manipulation of the input
vector subject to the constraints in each generation of the iterative
process.

4.2.1. Input vector
As a first step in FLC design, the number of MFs must be

defined to provide the solution from the optimization technique.
Depending on the number of MFs, the input vector Z is expressed
as

Zi;j ¼ X1
i;jX

2
i;j:::::X

n
i;j

h i
ð14Þ

Table 2
Parameter settings used in LSA, DSA, and PSO.

Parameter LSA DSA PSO

Population Size 50 50 50
Max. Iteration 100, 200, 500 100, 200, 500 100, 200, 500
c1 and c2 – – 2
p1 and p2 – 0.3.rand –

Channel time 10 – –
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Fig. 10. Variation in global optimization results for benchmark functions in Table 3: (a) F1 and (b) F2. (For interpretation of the references to color in this figure, the reader is
referred to the web version of this article.)

Table 4
Test 1 global optimization results for benchmark functions in Table 3.

Function ID Statistics LSA DSA PSO

F1 Best 1.06220E�19 0.939999414 1.76307E�06
Worst 2.40506E�06 37.18006813 0.000281909
Average 4.81067E�08 11.58475565 2.76248E�05
Median 1.86102E�15 9.501717692 1.67426E�05
Standard deviation 3.40126E�07 6.938443045 4.32130E�05

F2 Best 0.016268885 0.044973120 95.86581258
Worst 0.040825354 0.359368482 186.9633517
Average 0.024079674 0.123075150 138.8343114
Median 0.022692902 0.104513507 135.5998742
Standard deviation 0.005726198 0.065346271 22.07744869

Table 3
Unimodal and separable test functions.

Function
ID

Name Expression n Search
space

Function
minimum

F1 Sphere
f 1ðxÞ ¼

Pn
i ¼ 1

x2i
30 [�100,100]n 0

F2 Quartic
f 2ðxÞ ¼

Pn
i ¼ 1

ix4i þrandð0;1Þ 30 [�1.28,1.28]n 0
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where Zi;j represents the jth solution in the population during the
ith iteration, Xk

i;j is the kth element of Zi;j, and n is the total number
of parameters. For example, the input vector Zi;j should contain six
parameters that indicate the boundaries of MFs to be optimized to
represent the MFs in Fig. 5.

4.2.2. Objective function
An objective function is required to determine and evaluate the

performance of Zi;j for the MFs. Thus, the objective function for finding
the optimal values is formulated in such a way that Zi;j generates the
best fuzzy control action as a crisp value according to (12) described in
the defuzzification process. In the FLC design for PV inverter control, E
and CE at the tth sampling step corresponding to Vd (which is the
transformed inverter output voltage) indicate the goodness of the
crisp value of the fuzzy control action. Therefore, the mean square
error MSE (15) obtained from the reference values Vdref and the
measured values Vd are used as the objective function.

MSE¼
Pℓ

i ¼ 1 ðVdref �VdÞ2
ℓ

ð15Þ

where Vdref is the reference value that is equal to (1 p.u.), Vd is the
measured value, and ℓ is the number of the samples used to evaluate
MSE. In the optimization process, Eq. (15) needs to be minimized.

4.2.3. Optimization constraints
The optimization algorithm must be implemented while satisfying

all constraints utilized to determine the optimal values of the MF
parameters. The boundaries of these parameters should not overlap. In
other words, the element Xk

i;j should be between Xk�1
i;j and Xkþ1

i;j . If the
element Xk

i;j is greater than Xkþ1
i;j or less than Xk�1

i;j , this element
should be regenerated within its boundaries. Therefore, the following
restriction must be fulfilled to ensure that each MF parameter is

within the prescribed boundaries.

XK�1
i;j oXK

i;j oXKþ1
i;j : ð16Þ

4.2.4. Implementation steps of LSA to obtain the optimal FLC design
The implementation starts by resetting the LSA parameters,

namely, number of iterations (T), population size (N), problem
dimension (D), and channel time. The initial populations for the MFs
are then generated and encoded according to (14). The next step
involves the evaluation of the objective function using (15). Note that a
suitable running time Tr is required to populate the FLC output for the
evaluation of MSE in population N. After the initial population is
evaluated, the direction and position will be update using (5) and (7)
respectively. After all values of Zi;j in the population are updated, the
procedure reevaluates the objective function, and the process con-
tinues to the next iteration. This updating and objective function
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Fig. 11. Convergence characteristic curves for LSA, DSA, and PSO in solving F1 and F2.

Table 5
Unimodal and non-separable test functions.

Function ID Name Expression n Search space Function minimum

F3 Schwefel 2.22
f 3ðxÞ ¼

Pn
i ¼ 1

xij jþ∏n
i ¼ 1 xij j 30 [�10,10]n 0

F4 Rosenbrock
f 4ðxÞ ¼

Pn�1

i ¼ 1
100 xiþ1�x2i

� �2þ xi�1ð Þ2
h i 30 [�30,30]n 0

Table 6
Test 2 global optimization results for benchmark functions in Table 5.

Function ID Statistics LSA DSA PSO

F3 Best 2.21758E�07 0.420804245 0.001456467
Worst 0.970135549 1.939300935 0.018902868
Average 0.036806544 1.006036631 0.004923274
Median 0.001069055 0.921312778 0.004072683
Standard deviation 0.156233023 0.357910793 0.003334754

F4 Best 0.560036507 353.5219172 14.36215241
Worst 201.6439055 2347.035592 307.2355336
Average 64.28160301 1108.180713 68.72292596
Median 73.53003347 1002.19241 67.4273481
Standard deviation 43.75576111 572.4209417 57.81076978
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reevaluation process is repeated until the maximum iteration count is
reached as explained in Fig. 7.

5. FLC design for PV inverter control using the proposed
algorithm

To demonstrate the application of an optimum FLC design, a
3 kW, 240 V, 50 Hz PV inverter system is modeled in the Matlab
Simulink environment (Fig. 8) to supply various types of loads
continuously. As shown in Fig. 8, the three-phase outputs (Va, Vb,
and Vc) are measured and converted to Vd and Vq at each sampling
time Ts¼2 ms. The controller block shown in the figure contains
two FLCs that correspond to Vd and Vqin the d–q reference frame.

The controllers require E and CE to generate new Vd and Vq and to
convert to Va, Vb, and Vc . The converted signals are then utilized
to generate the PWM for driving the IGBT switches of the inverter.

The MFs for each input are seven MFs defined as trapezoidal
and triangular MFs are used according to the illustration in Fig. 9.
Seven parameters (i.e., X1

i;j to X7
i;j) are used to define the first

input (E), whereas seven other parameters (i.e., X8
i;j to X14

i;j ) are
used to define the second input (CE). Therefore, each controller
input Z in the optimum FLC design contains 14 parameters. Thus,
the FLC control rule for the PV inverter control system includes 49
rules (Table 1). The output is the standard output desired by the
controller.

The input vector and control rules are then defined. The
optimization process can be performed by evaluating the objective
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Fig. 12. Variation in global optimization results for benchmark functions in Table 5: (a) F3 and (b) F4.
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Table 7
Multimodal and separable test functions.

Function ID Name Expression n Search space Function minimum

F5 Foxholes

f 5ðxÞ ¼ 1
500þ

P25
j ¼ 1

1

jþ
P2
i ¼ 1

ðxi �aij Þ6

2
64

3
75

�1 2 [�65.53,65.53]n 1

F6 Branin
f 6ðxÞ ¼ x2� 5:1

4π2x
2
1þ5

πx1�6
	 
2

þ10 1� 1
8π

� �
cos x1þ10

2 [�5,10]� [0,15] 0.398
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function given in (15) using the Simulink model shown in Fig. 8 for
a suitable running time of Tr¼0.3 s.

The optimization process based on the LSA is started by
initializing the following parameters: the number of iterations
(T) as 100, number of populations (N) as 20, dimension of the
problem (D) as 14, and the channel time is 10. After the generation
of the initial populations and the calculation the corresponding
objective function for each input vector in the population, the LSA
updates the population and initiates a new iteration. If the LSA
reaches the maximum iteration, the FLC with the best MFs is

obtained. This result indicates that the proposed method presents
a systematic and easy way to design FLCs for PV inverter control
systems. The following section describes the results of the
problem-solving success of LSA algorithm and the optimum FLC
design for the proposed PV inverter with its performance.

6. Results and discussion

Two different tests have been carried out in this study. The first test
present in Section 6.1 shows the performance of LSA algorithm in
solving some of the benchmark optimization problems. The second
test given in Section 6.2, shows the practical application of LSA in
solving the problem of trial and error procedure in obtaining member-
ship functions (MFs) used in conventional FLCs.

6.1. Experiment-1

The proposed LSA is tested and validated using a well-utilized set
of 10 benchmark functions used by Rashedi et al. [26], Yao [35], and
Venkata Rao et al. [49], while developing their optimization algo-
rithms. However, functional characteristics such as modality, separ-
ability, and dimensionality are considerably important when testing
and validating a new algorithm. The modality of a function refers to
the number of vague peaks in the function surface. A function is
multimodal if it has two or more vague peaks. An algorithm that
encounters these peaks while searching may be trapped in one of the
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Fig. 15. Convergence characteristic curves for LSA, DSA, and PSO in solving (a) F5 and (b) F6.
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Table 8
Test 3 global optimization results for benchmark functions in Table 7.

Function
ID

Statistics LSA DSA PSO

F5 Best 0.998003838 0.998003838 0.998003838
Worst 2.982105157 0.998003838 6.903335694
Average 1.077446947 0.998003838 1.790398060
Median 0.998003838 0.998003838 1.992030900
Standard
deviation

0.337979509 3.36448E�16 1.259895845

F6 Best 0.397887358 0.397887358 0.397887358
Worst 0.397887358 0.397887358 0.397887358
Average 0.397887358 0.397887358 0.397887358
Median 0.397887358 0.397887358 0.397887358
Standard
deviation

1.68224E�16 7.79967E�12 1.68224E�16
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local minima. Meanwhile, separability indicates the difficulty level of
various benchmark functions. Typically, separable functions are easier
to solve than non-separable functions because each variable of a
function is independent of the other variables. The difficulty of a
problem also increases with function dimensionality. For highly non-
linear problems, dimensionality may be a significant barrier for almost
all optimization algorithms. In this study, the 10 benchmark functions
are categorized based on modality and separability, and four tests are
conducted to evaluate the reliability and efficiency for the proposed
algorithm. The LSA performance is compared with other standard
heuristic optimization methods, namely, DSA, and PSO. For a fair
comparison, the population size is set to 50 and the maximum
iteration is set to 100, 200, and 500. The algorithm-dependent
parameter settings for all algorithms are listed in Table 2.

6.1.1. Test 1
This test is conducted to evaluate the reliability and efficiency

of the LSA in searching the global minimum value when it is
subjected to benchmark functions with unimodal and separable
characteristics. Table 3 presents the details of these functions. This
test also compares the LSA with two other methods, namely, DSA,
and PSO, for validation. Each benchmark function is tested 50
times. The results considering the best, worst, average, median,
and standard deviation for the objective functions are shown in
Table 4. The best performance for each function is boldfaced. The
LSA reaches the best global minimum or near global minimum.
This result is also clearly observed in the box plot (Fig. 10)
constructed from the data obtained from 50 runs. Fig. 10 shows
that the performance of the LSA is satisfactory for all functions
because the 25th and 75th percentiles of the samples collected for
the LSA fall toward the minimum solution with a narrow inter-
quartile range. Meanwhile, the median of the sample for the case
of PSO (indicated by a red line) is very far from the best solution
value for F2.

During unimodal function optimization, the performance of the
algorithm can be compared with the other methods using the
convergence characteristic curves shown in Fig. 11. The LSA
converges faster than the other methods and thus possesses
superior convergence characteristics for this type of function
optimization.

6.1.2. Test 2
To observe the performance and consistency of the LSA in solving

the unimodal and non-separable functions, two benchmark functions
given in Table 5 are experimented on in this test: Schwefel 2.22 (F3),

and Rosenbrock (F4). These functions have the same dimensions
(n¼30) as those used in Test 1, but the difficulty level is higher
because these functions are non-separable. The test results acquired
using the LSA are compared with those obtained using the two
optimization methods (Table 6). The best performance for each
function is boldfaced. Table 6 shows that the LSA can find the best
near-optimum solution for functions F3 and F4. To determine the
consistency and overall performance of the LSA, the data obtained
from 50 runs are plotted (Fig. 12). The performance of the LSA is
relatively satisfactory for all the tested functions because the 25th and
75th percentiles of the samples collected for the LSA fall toward the
minimum solution with a narrow interquartile range. Fig. 13 shows
the convergence characteristic curves of the various optimization
methods obtained while solving benchmark functions F3 and F4.
Among the various algorithms, the LSA finds the best solutions.

Table 9
Multimodal and non-separable test functions.

Function ID Name Expression n Search space Function minimum

F7 Penalized
f 7ðxÞ ¼ π

n 10 sin 2ðπyiÞþ
Xn�1

i ¼ 1

yi�1
� �2 1þ10 sin 2ðπyiþ1Þ

h i
þ yn�1
� �2( )

þ
Xn
i ¼ 1

u xi ;10;100;4ð Þ

30 [�50,50]n 0

yi ¼ 1þxi þ1
4 ; u xi ; a; k;mð Þ ¼

kðxi�aÞ;m xi4a

0 �aoxioa

kð�xi�aÞ;m xio�a

8><
>:

F8 6-Hump Camel Back f 8ðxÞ ¼ 4x21�2:1x41þ1
3x

6
1þx1x2�4x22þ4x42 2 [�5,5]n �1.0316285

F9 Hartman 3
f 9ðxÞ ¼ � P4

i ¼ 1
ciexp � P4

j ¼ 1
aijðxj�pijÞ2

" #
4 [0,1]n �3.86

F10 Shekel 5
f 10ðxÞ ¼ � P5

i ¼ 1
ðx�aiÞðx�aiÞT þci
h i�1 4 [0,10]n �10

Table 10
Test 4 global optimization results for benchmark functions in Table 9.

Function
ID

Statistics LSA DSA PSO

F7 Best 2.23008E�15 0.011463807 1.10504E�08
Worst 4.379867485 1.468316408 0.207337908
Average 0.358172550 0.291749952 0.018659838
Median 0.103669020 0.170607599 1.90335E�07
Standard
deviation

0.743960008 0.336701290 0.054169508

F8 Best �1.031628453 �1.031628453 �1.031628453
Worst �1.031628453 �1.031628453 �1.031628453
Average �1.031628453 �1.031628453 �1.031628453
Median �1.031628453 �1.031628453 �1.031628453
Standard
deviation

0.000000000 0.000000000 0.000000000

F9 Best �3.862782148 �3.862782148 �3.862782148
Worst �3.862782148 �3.862782148 �2.810142824
Average �3.862782148 �3.862782148 �3.508607946
Median �3.862782148 �3.862782148 �3.535082985
Standard
deviation

0.000000000 0.000000000 0.307782201

F10 Best �10.15319968 �10.15319968 �10.15319968
Worst �2.630471668 �10.14497223 �2.682860396
Average �7.027319823 �10.15283380 �8.653837241
Median �5.100772140 �10.15319541 �10.15319968
Standard
deviation

3.156152099 0.001254219 2.808248893
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6.1.3. Test 3
In this test, the difficulty level of the optimization problem is

increased by using multimodal and separable functions (Table 7).
Each benchmark function is tested again for 50 times. The results
considering the best, worst, average, median, and standard devia-
tion of the objective functions are shown in Table 8. The best
performance for each function is boldfaced. All algorithms obtain
the best global minimum or near-global minimum. However, the
comparative results shown in Fig. 14 prove the capability of the
LSA to escape from any local minimum. Fig. 15 shows that the
convergence rate of the LSA is much faster at the initial stages than
at the later stages.

6.1.4. Test 4
The exploration and exploitation abilities of the proposed LSA

are also tested with four multimodal and non-separable high- and
low-dimensional benchmark functions. Table 9 presents the
details of these functions. Similar to the previous test analysis,
this test also compares the LSA with two other methods, namely,
DSA, and PSO, for validation using the same statistical indices
(Table 10). The best performance for each function is boldfaced.
The LSA reaches the best global minimum or near-global mini-
mum for all tested functions. This result confirms the exploration
and exploitation abilities of the proposed LSA. Moreover, the box
plots shown in Fig. 16 show that the performance of the LSA is
comparatively satisfactory for most of the tested functions.

Nonetheless, for the Shekel 5 test function (F10), the LSA cannot
find satisfactory solutions in most of the test runs because the
median and the 25th and 75th percentiles of the samples collected
for the LSA extend from the true solution. The convergence
characteristics of the functions are depicted in Fig. 17.

6.2. Experiment-2

The PV inverter system depicted in Fig. 8 is used to evaluate the
proposed LSA-based FLC (LSA-FL) optimization method and the
robustness of the overall system. Fig. 18 shows the convergence
characteristics of LSA-FL to find best optimal solution for the test
system, along with the results obtained with DSA-based FLC (DSA-
FL) and PSO-based FLC (PSO-FL). For a fair comparison, all
optimization algorithms used same parameters (i.e. problem
dimension, population, and iteration). Fig. 18 shows that LSA-FL
converges faster than DSA-FL, and PSO-FL. Furthermore, LSA-FL
generates better optimal solution compared with DSA-FL, and
PSO-FL. Note that the optimum performance of LSA-FL shown in
Fig. 18 is obtained when both FLCs representing Vd and Vq

accomplish the MFs shown in Fig. 19. Meanwhile Figs. 20 and 21
show the optimize MF for the E and CE using DSA and PSO
respectively. It should be noted from Figs. 19 to 21 that different
optimization techniques gives altered membership functions for C
and CE which depends on the minimum objective function value
achieved at the end of optimization process. Considering the
effectiveness of LSA-FL, only this controller is mainly used to
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evaluate the performance of the overall PV inverter system once
subjected to different types of loads.

To validate the proposed inverter control strategy and to ensure
that the controller can deal with different types of loads, a
simulation is conducted using the simulation model shown in
Fig. 8 for 0.3 s. The nonlinear rectifier load with a 100Ω is
connected from 0 s to 0.1 s. Then, the RL load of R¼50Ω,
L¼50 mH is connected from 0.1 s to 0.2 s. Finally, a resistive load
of 50Ω is connected from 0.2 s to 0.3 s.

Fig. 22 illustrates the output voltage waveforms with different
loads. The figure shows that the voltage waveforms are not
affected by changing the load type. However, short transients
occur during the transition between one load to another. The

voltage waveforms are sinusoidal, stable, clean, and balanced at
50 Hz and the displacement between each phase is 1201. The
controller manages to precisely stabilize the amplitude at 339 V
and the rms voltage of 240 V without any undesired voltage
overshoots. It reveals a considerably good transient and steady-
state performance of the inverter. The controller distinctly suc-
ceeds in following the exact voltage reference and quickly realiz-
ing the steady-state values.

The voltage ðVaÞ and current ðIaÞ are depicted in Fig. 23 to
exhibit clearly the effect of phase voltage overshoots along with
current waveform. When the nonlinear load is subjected to the
inverter, the current waveform is nonsinusoidal. However, the
amplitude is stable with a peak value of approximately 5.9 A. The
output currents ðIaÞ have the same phase and frequency with the
output voltage ðVaÞ without any problems, such as lag, lead, and
flicker. The load has been changed from nonlinear load to RL load
in 0.1 s as shown in Fig. 23. The change in load does not affect the
quality of the current waveforms. The waveforms are still stable,
and the controller achieves a constant peak level with approxi-
mately 6.5 A and approximately 4.5 A rms. Moreover, the wave-
forms are still balanced at 50 Hz and displaced by 1201 between
each phase. However, the load current now lags the voltage
waveform by 17.451, as depicted in Fig. 23; therefore, the power
factor for this load is 95.4%. Again the load has been changed from
RL load to R load as shown in Fig. 23. The phase load current
waveform with R load shows a constant magnitude of approxi-
mately 6.8 A and a rms current of 4.8 A. This waveform is a
balanced sinusoidal waveform of 50 Hz. The phase shift is also
1201 between each phase. The voltage and the current have the
same phase angle and therefore follow unity power factor

0 50 100 150 200
0

2

4

6

8

10 x 108

Fu
nc

tio
n 

va
lu

e

F7

Iteration
0 50 100 150 200

-1.5

-1

-0.5

0

0.5

1

Fu
nc

tio
n 

va
lu

e

F8

Iteration

LSA
DSA
PSO

LSA
DSA
PSO

0 100 200 300 400 500
-4

-3.5

-3

-2.5

-2

Fu
nc

tio
n 

va
lu

e

F9

Iteration
0 100 200 300 400 500

-10

-8

-6

-4

-2

0

Fu
nc

tio
n 

va
lu

e

F10

Iteration

LSA
DSA
PSO

LSA
DSA
PSO

Fig. 17. Convergence characteristic curves for LSA, DSA, and PSO in solving (a) F7, (b) F8, (c) F9, and (d) F10.

0 20 40 60 80 100

0.05

0.1

0.15

0.2

0.25

0.3

Iteration

LSA-FL
DSA-FL
PSO-FL

M
ea

n 
ob

je
ct

iv
e 

fu
nc

tio
n

Fig. 18. Performance comparisons based on LSA-FL, DSA-FL, and PSO-FL.

H. Shareef et al. / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎14

Please cite this article as: H. Shareef, et al., A novel approach for fuzzy logic PV inverter controller optimization using lightning
search algorithm, Neurocomputing (2015), http://dx.doi.org/10.1016/j.neucom.2015.05.083i

 

 

 

http://dx.doi.org/10.1016/j.neucom.2015.05.083
http://dx.doi.org/10.1016/j.neucom.2015.05.083
http://dx.doi.org/10.1016/j.neucom.2015.05.083


operation as expected. Considering the phase relation of both load
current and voltage waveform, it reveal in phase relationship
which indicates high efficiency.

For high power capacity applications, the magnitude of the line
voltage, such as Vab, is commonly considered in three-phase
systems. It is more than the phase voltage Va by a value of

ffiffiffi
3

p
.

The waveform of the line voltage is illustrated in Fig. 24. The line
voltage waveform (Vab) does not affect system performance.
Notably, the overshoots during the transient periods are minimal
when line voltages are considered. Nevertheless, the controller

manages to regulate the amplitude at 586 V, whereas the rms
voltage is equal to 415 V as required by the system. The line output
voltage acquires a sinusoidal waveform at 50 Hz, and the con-
troller succeeds in following the exact voltage reference and
quickly realizing the steady-state values.

To verify the quality on the inverter output waveforms, fast
Fourier transform (FFT) is performed respecting to the total
harmonic distortion (THD). The quality of the waveform is inver-
sely proportional to the THD percentage. The THD percentage for
the output waveforms should be less than 5% for the output
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Fig. 19. Optimized membership functions of the (a) E and (b) CE using LSA.
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0 0.05 0.1 0.15 0.2 0.25 0.3

-400

-300

-200

-100

0

100

200

300

400

Time (s)

V
ol

ta
ge

 (V
)

0 0.05 0.1 0.15 0.2 0.25 0.3

-7

-3.5

0

3.5

7

C
ur

re
nt

 (A
)

Va Ia

RL load R loadnon linear load

Fig. 23. Output voltage and current load of the inverter with three load types.
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waveforms to meet the international IEEE-929-2000 standard
[50]. Figs. 25–27 show the THD percentages of the voltages and
currents obtained for the three load types analyzed in this study.
The controller keeps the THD of the voltage within a very small
rate for all load types. This rate is much less than the 5%
requirements of the IEEE-929-2000 international standard and
more than 5% for the THDi with nonlinear load. This result is
attributed to the nonlinear nature of the current waveform drawn
by the nonlinear load that cannot be controlled by the inverter.

To further evaluate the performance of the proposed controller
compared to DSA and PSO based FLC, three indices, namely, mean

square error (MSE), mean absolute error, and standard deviation
(σ) for the error, were analyzed. The MSE is given by (15), and the
other two indices are given by

MAE¼
Pℓ

i ¼ 1 Vdref �Vd

�� ��
ℓ

ð17Þ

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPℓ

i ¼ 1 ðed�ηÞ2
ℓ

s
ð18Þ

where Vdref is the reference value that is equal to (1 p.u.), Vd is the
measured value, ℓ is the number of the samples, ed is the error
between the reference value and the measured value, and η is
average of the error values.

MSE is inversely proportional to the quality of the signal. A
decrease in the MSE value means an increase in the quality of the
signal. According to the MSE values, the LSA-FL performs better
than the other controllers, as depicted in Table 11. The best
performance is in boldfaced in Table 11.
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Fig. 26. THD for the three-phase inverter's phase (a) voltage and (b) current with RL load.
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Fig. 27. THD for the three-phase inverter's phase (a) voltage and (b) current with nonlinear load.

Table 11
Mean square error.

LSA-FL DSA-FL PSO-FL

R load 0.002685594 0.003706301 0.004859787
RL load 0.002617753 0.003740532 0.005186767
Nonlinear load 0.002670313 0.003790668 0.005780010

Table 12
Mean absolute error.

LSA-FL DSA-FL PSO-FL

R load 0.009547364 0.016185209 0.037026325
RL load 0.007493755 0.019693860 0.046842405
Nonlinear load 0.008327629 0.020244398 0.052752357

Table 13
Standard deviation.

LSA-FL DSA-FL PSO-FL

R load 0.051397220 0.060499763 0.064005389
RL load 0.051067119 0.060255617 0.064694449
Nonlinear load 0.051609600 0.060592795 0.065408192
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Meanwhile, a small MAE value indicates that the data points
are very near to the reference, whereas a large MAE value indicates
that the data points are far from the values targeted. Table 12
clearly shows that the LSA-FL performs better than the other two
controllers for all types of loads.

Table 13 shows the standard deviation for the LSA-FL, DSA-FL,
and PSO-FL. The standard deviation show that how much the
measured values are spread out from the average (mean). A low
standard deviation means that most of the values are very close to
the average; meanwhile a high standard deviation means that the
values are spread out. According to the standard deviation index
shown in Table 13, the LSA-FL again performs better than the other
controllers.

7. Conclusion

This study first introduced a novel nature-inspired optimization
algorithm called the LSA. It was formulated based on lightning, which
originates from thunderstorm. In contrast to that of the counterparts
of the LSA, the major exploration issue of the proposed algorithmwas
modeled using the exponential random behavior of space projectile
and the concurrent formation of two leader tips at fork points using
opposition theory. LSA was then proposed to automatically tune the
MFs of the FLC in PV inverter. For this purpose, a suitable objective
function was developed for minimizing the MSE of the output voltage
at the inverter terminal. To evaluate the reliability and efficiency of the
proposed algorithm, the LSAwas tested using 10 benchmark functions
with various characteristics and compared the performance of the LSA
with DSA and PSO. The proposed LSA demonstrated satisfactory
exploration, exploitation, and convergence characteristics. Further-
more, the LSA generally provides better results compared with DSA
and PSO in optimizing both benchmark functions and FLC design for
PV inverter.

Acknowledgment

The authors are grateful to Universiti Kebangsaan Malaysia for
supporting this research financially under Grants ETP-2013-044.

References

[1] T. Khatiba, A. Mohamed, K. Sopian, Optimization of a PV/wind micro-grid for
rural housing electrification using a hybrid iterative/genetic algorithm: case
study of Kuala Terengganu, Malaysia, Energy Build. 47 (2012) 321–331.

[2] M.Z. Daud, A. Mohamed, M.A. Hannan, An improved control method of battery
energy storage system for hourly dispatch of photovoltaic power sources,
Energy Convers. Manag. 73 (2013) 256–270.

[3] F. Blaabjerg, Z. Chen, S. Kjaer, Power electronics as efficient interface in
dispersed power generation systems, IEEE Trans. Power Electron. 19 (2004)
1184–1194.

[4] R. Ortega, E. Figueres, G. Garcerá, C.L. Trujillo, D. Velasco, Control techniques
for reduction of the total harmonic distortion in voltage applied to a single-
phase inverter with nonlinear loads: Review, Renew. Sustain. Energy Rev 16
(2012) 1754–1761.

[5] T. Ryu, Development of power conditioner using digital controls for generating
solar power, OKI Tech. Rev. 76 (2009) 40–43.

[6] A.H. Mutlag, H. Shareef, A. Mohamed, M.A. Hannan, J.A. Ali, An improved fuzzy
logic controller design for PV inverters utilizing differential search optimiza-
tion, Int. J. Photoenergy 2014 (2014) 1–14.

[7] M. Alata, M.A. Al-Nimr, Y. Qaroush, Developing a multipurpose sun tracking
system using fuzzy control, Energy Convers. Manag. 46 (2005) 1229–1245.

[8] A. Messai, A. Mellit, A. Massi Pavan, A. Guessoum, H. Mekki, FPGA-based
implementation of a fuzzy controller (MPPT) for photovoltaic module, Energy
Convers. Manag. 52 (2011) 2695–2704.

[9] N. Altin, I. Sefa, dSPACE based adaptive neuro-fuzzy controller of grid
interactive inverter, Energy Convers. Manag. 56 (2012) 130–139.

[10] K. Premkumara, B.V. Manikandan, Adaptive neuro-fuzzy inference system
based speed controller for brushless DC motor, Neurocomputing 138 (2014)
260–270.

[11] L.K. Letting, J.L. Munda, Y. Hamam, Optimization of a fuzzy logic controller for
PV grid inverter control using S-function based PSO, Sol. Energy 86 (2012)
1689–1700.

[12] S. Tong, Y. Li, G. Feng, T. Li, Observer-based adaptive fuzzy backstepping
dynamic surface control for a class of MIMO nonlinear systems, IEEE Trans.
Syst. Man Cybern. Part B 41 (2011) 1124–1135.

[13] S. Tong, Y. Li, P. Shi, Observer-based adaptive fuzzy backstepping output
feedback control of uncertain MIMO pure-feedback nonlinear systems, IEEE
Trans. Fuzzy Syst. 20 (2012) 771–785.

[14] S. Tong, Y. Li, Adaptive fuzzy output feedback control of MIMO nonlinear
systems with unknown dead-zone inputs, IEEE Trans. Fuzzy Syst. 21 (2013)
134–146.

[15] K. Deb, A. Kumar, Real coded genetic algorithms with simulated binary
crossover: studies on multi modal and multi objective problems, Complex
Syst. 9 (1995) 431–454.

[16] C. Kanzow, N. Yamashita, T. Fukushima, Levenberg–Marquardt methods with
strong local convergence properties for solving nonlinear equations with
convex constraints, J. Comput. Appl. Math. 172 (2004) 375–397.

[17] P. Civicioglu, Transforming geocentric cartesian coordinates to geodetic
coordinates by using differential search algorithm, Comput. Geosci. 46
(2012) 229–247.

[18] R.C. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in:
Proceedings of the Sixth International Symposium on Micro Machine and
Human Science, New York, NY, 1995, pp. 39–43.

[19] D. Karaboga, An Idea Based on Honey Bee Swarm for Numerical Optimization.
Computer Engineering Department, Engineering Faculty, Erciyes University,
Tec. Rep.TR-06 (1-10), October 2005.

[20] M. Dorigo, V. Maniezzo, A. Colorni, The ant system: optimization by a colony
of cooperating agents, IEEE Trans. Syst. Man Cybern. – Part B: Cybern. 26
(1996) 29–41.

[21] M. Eslami, H. Shareef, M.R. Taha, M. Khajehzadeh, Adaptive particle swarm
optimization for simultaneous design of UPFC damping controllers, Int. J.
Electr. Power Energy Syst. 57 (2014) 116–128.

[22] D. Karaboga, B. Basturk, On the performance of artificial bee colony (ABC)
algorithm, Appl. Soft Comput. 8 (2008) 687–697.

[23] H. Li, S. Wang, M. Ji, An Improved Chaotic Ant Colony Algorithm. Advances in
Neural Networks, ISNN 2012, Springer (2012) 633–640.

[24] W. Gao, S. Liu, Improved artificial bee colony algorithm for global optimiza-
tion, Inf. Process. Lett. 111 (2011) 871–882.

[25] Z.H. Zhan, J. Zhang, Y. Li, S.H. Chung, Adaptive particle swarm optimization,
IEEE Trans. Syst. Man Cybern. – Part B: Cybern. 39 (2009) 1362–1381.

[26] E. Rashedi, H. Nezamabadi-pour, S. Saryazdi, GSA: a gravitational search
algorithm, Inf. Sci. 179 (2009) 2232–2248.

[27] Z.W. Geem, J.H. Kim, G.V. Loganathan, A new heuristic optimization algorithm:
harmony search, Simulation 76 (2001) 60–70.

[28] D. Simon, Biogeography-based optimization, IEEE Trans. Evol. Comput. 12
(2008) 702–713.

[29] A. Ahrari, A.A. Atai, Grenade explosion method – a novel tool for optimization
of multimodal functions, Appl. Soft Comput. 10 (2010) 1132–1140.

[30] D. Goldberg, Genetic Algorithms in Search, Optimization, and Machine
Learning, Addison-Wesley, New York, 1989.

[31] L.J. Fogel, A.J. Owens, M.J. Walsh, Artificial Intelligence Through Simulated
Evolution, Wiley, New York, 1966.

[32] R. Storn, K. Price, Differential evolution – a simple and efficient heuristic for
global optimization over continuous spaces, Glob. Optim. 11 (1997) 341–359.

[33] J.R. Koza, Genetic Programming: On the Programming of Computers by
Natural Selection, MIT Press, Cambridge, MA, 1992.

[34] S. Das, P.N. Suganthan, Differential evolution: a survey of the state-of-the-art,
IEEE Trans. Evol. Comput. 15 (2011) 4–31.

[35] X. Yao, Y. Liu, G. Lin, Evolutionary programming made faster, IEEE Trans. Evol.
Comput. 3 (1999) 82–102.

[36] W. Khatib, P. Fleming, The stud GA: a mini revolution?, in: A. Eiben, T. Back,
M. Schoenauer, H. Schwefel (Eds.), Parallel Problem Solving from Nature,
Springer, New York, 1998.

[37] J. Brest, S. Greiner, B. Boskovic, M. Mernik, V. Zumer, Self-adapting control
parameters in differential evolution: a comparative study on numerical
benchmark problems, IEEE Trans. Evol. Comput. 10 (2006) 646–657.

[38] C. Igel, N. Hansen, S. Roth, Covariance matrix adaptation for multi-objective
optimization, Evol. Comput. 15 (2007) 1–28.

[39] A.A. Dul’zon, V.V. Lopatin, M.D. Noskov, O.I. Pleshkov, Modeling the develop-
ment of the stepped leader of a lightning discharge, Tech. Phys. 44 (1999)
394–398.

[40] I. Gallimberti, G. Bacchiega, A. Bondiou-Clergerie, P. Lalande, Fundamental
processes in long air gap discharges, Appl. Phys. 3 (2002) 1–25.

[41] J.R. Dwyer, M.A. Uman, The physics of lightning, Phys. Rep. 534 (2014)
147–241.

[42] D. Nguyen, G. Deegan, F. D’Alessandro, Fractal nature of probabilistic model of
lightning discharge, in: TENCON 2001, Proceedings of IEEE Region 10 Inter-
national Conference on Electrical and Electronic Technology, IEEE 2001,
pp. 814–818.

[43] A. Berkopec, Fast particles as initiators of stepped leaders in CG and IC
lightnings, J. Electrostat. 70 (2012) 462–467.

[44] H.R. Tizhoosh, Opposition-Based Learning: A New Scheme for Machine
Intelligence, CIMCA/IAWTIC 2005, pp. 695–701.

H. Shareef et al. / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎18

Please cite this article as: H. Shareef, et al., A novel approach for fuzzy logic PV inverter controller optimization using lightning
search algorithm, Neurocomputing (2015), http://dx.doi.org/10.1016/j.neucom.2015.05.083i

 

 

 

http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref1
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref1
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref1
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref2
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref2
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref2
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref3
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref3
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref3
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref4
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref4
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref4
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref4
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref5
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref5
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref6
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref6
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref6
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref7
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref7
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref8
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref8
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref8
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref9
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref9
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref10
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref10
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref10
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref11
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref11
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref11
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref12
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref12
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref12
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref13
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref13
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref13
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref14
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref14
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref14
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref15
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref15
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref15
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref16
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref16
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref16
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref17
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref17
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref17
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref18
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref18
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref18
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref19
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref19
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref19
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref20
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref20
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref21
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref21
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref22
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref22
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref23
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref23
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref24
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref24
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref25
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref25
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref26
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref26
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref27
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref27
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref28
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref28
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref29
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref29
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref30
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref30
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref31
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref31
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref32
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref32
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref33
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref33
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref34
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref34
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref34
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref35
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref35
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref35
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref36
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref36
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref37
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref37
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref37
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref38
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref38
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref39
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref39
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref40
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref40
http://dx.doi.org/10.1016/j.neucom.2015.05.083
http://dx.doi.org/10.1016/j.neucom.2015.05.083
http://dx.doi.org/10.1016/j.neucom.2015.05.083


[45] R. Nasiri, A. Radan, Pole-placement control strategy for 4 leg voltage source
inverters, in: Proceedings of the IEEE Conference on Power Electronic & Drive
Systems & Technologies (PEDSTC010). IEEE 2010, pp. 74–82.

[46] G.S. Thandi, R. Zhang, K. Zhing, F.C. Lee, D. Boroyevich, Modeling, control and
stability analysis of a PEBB based DC DPS, IEEE Trans. Power Deliv. 14 (1999)
497–505.

[47] C.-H. Cheng, Design of output filter for inverters using fuzzy logic, Expert Syst.
Appl. 38 (2011) 8639–8647.

[48] C. Elmas, O. Deperlioglu, H.H. Sayan, Adaptive fuzzy logic controller for DC–DC
converters, Expert Syst. Appl. 36 (2009) 1540–1548.

[49] R. Venkata Rao, V. Patel, An improved teaching-learning-based optimization
algorithm for solving unconstrained optimization problems, Sci. Iran. 20
(2013) 710–720.

[50] IEEE Std 929-2000, Recommended Practices for Utility Interface of Photo-
voltaic System, The Institute of Electrical and Electronics Engineers, 2002.

Hussain Shareef received his B.Sc. with honours from
IIT, Bangladesh, M.S. degree from METU, Turkey, and
Ph.D. degree from UTM, Malaysia, in 1999, 2002 and
2007, respectively. He is currently a Principal
Researcher at TNB Research Sdn Bhd, Malaysia. His
current research interests are renewable energy tech-
nologies, power quality, artificial intelligence and
power system distribution automation. He is a member
of IEEE.

Ammar Hussein Mutlag received his B.Sc. and M.S.
degrees from University of Technology, Iraq in 2000
and 2005, respectively. He is currently pursuing the Ph.
D. degree in Electrical Engineering at Universiti
Kebangsaan Malaysia. His research interest is in the
application of artificial intelligence to power
converters.

Azah Mohamed received her B.Sc. from University of
London in 1978 and M.Sc. and Ph.D. from Universiti
Malaya in 1988 and 1995, respectively. She is a Profes-
sor in the Department of Electrical, Electronic and
Systems Engineering, Universiti Kebangsaan Malaysia.
Her main research interests are power system security,
power quality, artificial intelligence and renewable
energy systems. She is a senior member of IEEE.

H. Shareef et al. / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 19

Please cite this article as: H. Shareef, et al., A novel approach for fuzzy logic PV inverter controller optimization using lightning
search algorithm, Neurocomputing (2015), http://dx.doi.org/10.1016/j.neucom.2015.05.083i

 

 

 

http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref41
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref41
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref41
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref42
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref42
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref43
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref43
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref44
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref44
http://refhub.elsevier.com/S0925-2312(15)00781-X/sbref44
http://dx.doi.org/10.1016/j.neucom.2015.05.083
http://dx.doi.org/10.1016/j.neucom.2015.05.083
http://dx.doi.org/10.1016/j.neucom.2015.05.083

	A novel approach for fuzzy logic PV inverter controller optimization using lightning search algorithm
	Introduction
	Mechanism of lightning
	Lightning search algorithm (LSA)
	Projectile and step leader propagation
	Properties of the projectile
	Projectile modeling and step leader movement
	Transition projectile
	Space projectile
	Lead projectile


	Inverter control methodology
	Control design procedure
	Definition of the module characteristics
	Fuzzifier design
	Inference engine design
	Defuzzifier design

	Proposed optimum FLC design procedure
	Input vector
	Objective function
	Optimization constraints
	Implementation steps of LSA to obtain the optimal FLC design


	FLC design for PV inverter control using the proposed algorithm
	Results and discussion
	Experiment-1
	Test 1
	Test 2
	Test 3
	Test 4

	Experiment-2

	Conclusion
	Acknowledgment
	References




